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Abstract—In molecular communication, gaps in the underlying
theoretical and mathematical framework create numerous chal-
lenges. Currently, most researchers rely on simulations to study
these systems. However, simulations can be time consuming and
impractical. Moreover, due to the complexity and dependencies
present in these systems, deriving a mathematical framework that
can capture the essence of molecular communication systems is
also challenging. In this work, we derive a simple mathematical
model, based on some independence assumptions, to estimate the
information rate of a molecular communication system employing
active transport propagation. We show that the presented model
estimates the simulated information rate closely for small com-
munication time intervals. We also use the derived mathematical
model to design and verify an optimal loading area that would
maximize the information rate.

I. INTRODUCTION

Molecular communication [1] is a new and emerging field
of science where molecules are used to transfer information
over very small distances, typically on the order of micro-
or nanometers. Molecular communication systems are com-
plex, and traditional communication analysis techniques can
not be applied to them directly. Furthermore, due to gaps
in their underlying theoretical and mathematical framework,
researchers sometimes rely on computer simulations to study
these communication systems. However, running simulations
can be time consuming and impractical. Therefore, it is
desirable to find a mathematical framework for studying these
systems. Moreover, deriving a mathematical model, specially
for molecular communication in confined space, is extremely
difficult because of the complexity and dependencies present
in these systems. In this work, with the help of some inde-
pendence assumptions, we first present a simple mathematical
representation of molecular communication systems in con-
fined space, that can be employed to estimate the information
rate of active transport propagation. We then use the proposed
model to design a loading area or transmission zone that would
maximize the information transfer rate.
In molecular communication there are two major prop-

agation schemes: passive transport and active transport. In
passive transport, the information carrying particles diffuse
in the confined microfluidic channel and follow a Brownian
motion from the transmission zone to the receiver zone.
In active transport, the information particles are transported

actively using molecular motors such as kinesin. For example
in [2], microtubule filaments moving over a glass substrate
covered with stationary kinesin motors is proposed as an active
transport scheme for molecular communication systems. In
this work we consider active transport propagation scheme
based on [2] to derive our mathematical model.
Notable works employing simulation or mathematical mod-

els to study molecular communication systems include a
general formulation of molecular communication as a tim-
ing channel under Brownian motion [3], [4], an analysis of
information transfer rates using molecular motors [5], [6],
mathematical channel models for continuous diffusion [7], and
a simple model comparing the achievable information rates
of passive transport using Brownian motion to that of active
transport using microtubule filaments moving over a molecular
motor track [8], [9].
While in [8], [9] we rely on simulations to obtain the

information rate, in this paper we focus on deriving a mathe-
matical model which could eliminate the need for simulations.
As the main contribution of this paper, we present a simple
mathematical model based on the active transport propagation
system presented in [9]. For small values of time duration
per communication session (upto 1000s), we conclude that
our mathematical model can closely estimate the information
rate. For larger time durations (above 1000s) the accuracy
of the estimation drops as the time duration increases. This
error in estimation is because of the simplifying independence
assumptions in the proposed mathematical model. As time per
communication session increases, these assumptions become
less realistic and result in larger errors in estimation. As an
application of this contribution, we use this model to find and
verify an optimal design of the loading area; this optimization
leads to large improvements in performance, and would be
computationally intensive to find without our model.
The rest of this paper is summarized as follows. In Section

II-A we first present a brief overview of molecular commu-
nication environment. We then discuss the encoding scheme,
information rate and channel capacity in Section II-B. Our
proposed mathematical model for estimation of information
rate is proposed in Section II-C. In Section II-D we optimize
the transmission area using the proposed mathematical model.
We verify our mathematical model by comparing the results
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Fig. 1. Depiction of the communication environment.

against software simulation in Section III. Finally, we present
our concluding remarks in Section IV.

II. COMMUNICATION ENVIRONMENT AND
MATHEMATICAL MODEL

A. Molecular Communication Environment
Our molecular communication environment is similar to the

ones in [8], [9], [2]. We use a rectangular propagation environ-
ment (with slightly rounded corners to assist the simulation),
consisting of a transmission or loading zone and a receiver
or unloading zone. Message-bearing particles originate at the
loading zone, and propagate until they arrive at the unloading
zone. These particles are initially assumed to be anchored
to the loading zone until microtubule filaments, moving over
molecular motor tracks that cover the whole environment, pick
up and transport the information carrying particles from the
loading zone to the unloading zone.
As in [2], we assume that the microchannel environment

is lined with static kinesin molecular motors, and that these
motors cause microtubule filaments to propagate along their
surface. The motion of the microtubule is largely regular
(compared to pure Brownian Motion), although the effects
of Brownian motion cause random fluctuations. The loading
and unloading mechanics are assumed to be the same as those
proposed in [2]. The particles are anchored to the loading zone
through a single stranded DNA (ssDNA) hybridization bonds,
and do not move until they are picked up by a microtubule fila-
ment. The pick-up and drop-off mechanisms are also assumed
to be carried out through ssDNA hybridization bonds. The
starting location of the microtubule is assumed to be random
and uniformly distributed across the entire propagation area.
Moreover, the initial directional angle for the motion of the
microtubule is selected uniformly at random from the range
[0, 2π], and microtubules are assumed to be initially unloaded.
This process is summarized in Figure 1 and the reader is
referred to [2] for detailed explanation.
In order to capture the loading process, in the simulation

and the mathematical model, we use the grid loading structure
proposed in [9]. For loading an information particle, the
microtubule filament must drive close to the anchored particle.
Therefore, we divide the loading zone into a square grid, where
the length of each square in the grid is the same as the diameter
of the particles. We then distribute particles randomly and
uniformly between the squares in the grid. If a microtubule
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Fig. 2. A sample trajectory of active transport. The path of the microtubule is
the line in the middle of the rectangular channel. The red portion corresponds
to the path of the unloaded microtubule, while the green portion corresponds
to the path of the loaded microtubule. The grid loading structure is on the left
hand side and the unloading strip is on the right hand side. The cyan squares
in the loading zone represent areas that contain an anchored particle which
yellow squares represent areas with no particles.

enters a square which is occupied by a particle, we assume the
microtubule loads that particle given it has an empty loading
slot available. In general, based on laboratory experiments we
assume that the microtubules can load multiple particles and
the maximum number of particles a microtubule can load is
given by half of its length divided by the diameter of the
particles. For unloading, we assume all the loaded particles
are unloaded as soon as a microtubule enters the unloading
zone. Figure 2 shows a sample trajectory with the loading
and unloading mechanism. Notice that the loading and the
unloading zone in this figure are rectangular strips across the
width of the channel. We refer to this particular shape of the
loading and the unloading zone as the strip loading zone and
the strip unloading zone, respectively.

B. Achievable Information Rate in Molecular Communication
In this section we describe the channel capacity and achiev-

able information rates, which are an important part of any
communication system, and discuss how they can be applied
to molecular communication channels. Previous work has con-
sidered molecular communication either as a timing channel
problem (i.e., where information is encoded in the times when
molecules are released) [3], [6], or as an inscribed matter
problem (i.e., where information is encoded by transmitting
custom-made particles, such as specific strands of DNA).
However, in this paper, we consider information transmission
as a mass transfer problem – in other words, a message
is transmitted by moving a number of particles from the
transmitter to the receiver.
In the simplest possible conception of this scheme, the

particles themselves are not information-bearing, and a mes-
sage is conveyed in the number of particles released by the
transmitter. For example, if a maximum of three particles may
be used, from a traditional communication system perspective,
we may form messages two bits long (i.e., log2 4): “00”
for 0 particle, “01” for 1 particle, “10” for 2 particles, and
“11” for 3 particles. However, this message might not be
perfectly conveyed to the receiver: given a time limit T for the



 
  

 
  





Fig. 3. Traditional and molecular communication channels. In traditional
communication the noisy channel limits the channel capacity, while in
molecular communication the random propagation of information particles
limits the channel capacity.

communication session, it is possible that some of the particles
will not arrive at the receiver after T has elapsed.
The maximum rate any communication system can reliably

transmit information over a noisy channel is bounded by a
limit called channel capacity [10]. In traditional communi-
cation systems, a source (transmitter) has a set of possible
transmission symbols X and transmits a symbol X ∈ X
per channel use, where, from the channel’s perspective, X
is a random variable given by probability distribution function
(PDF) fX(x). Because of the noise present in the channel,
the destination (receiver) might not receive the symbol X
correctly. Let Y be the set of possible message symbols the
destination can receive. Note that X ⊆ Y since the received
symbol might be corrupted such that it is not in X . Therefore,
the destination receives a symbol Y ∈ Y per channel use,
where Y is a random variable given by PDF fY (y). This
process is summarized in the top portion of Figure 3.
The channel capacity of such communication channel can

be calculated using mutual information I(X ;Y ), given by

I(X ;Y ) = E

[

log2
fY |X(y|x)

∑

x fY |X(y|x)fX(x)

]

, (1)

where, in this example, fY |X(y|x) represents the probability of
receiving symbol y at the destination, given that symbol x was
transmitted by the source; fX(x) represents the probability
of transmitting symbol x at the source; and E[·] represents
expectation. The channel capacity can be calculated using
mutual information as,

C = max
fX (x)

I(X ;Y ), (2)

where C is the channel capacity, which is represented by
the maximum value of mutual information over all possible
transmission symbols’ probability distributions.
The same concept can be applied to molecular communi-

cation systems, as shown in the bottom of Figure 3. Since
we have assumed that messages are encoded in the number
of particles, let X represent the number of particles released
into the medium by the transmitter (i.e. the source symbols),
Y represent the number that arrive at the destination (i.e. the
symbol at the receiver) once T seconds have elapsed, and

xmax be the maximum number of particles the transmitter
can release per channel use. In other words, the set of possible
transmission symbols are X = {0, 1, 2, · · · , xmax}. Just like
the traditional communication channel, from the channel’s
perspective, X ∈ X is a discrete random variable given by
probability mass function (PMF) fX(x), Y ∈ X is also a
discrete random variable given by PMF fY (y), and a channel
use is defined as T second intervals between the transmission
releases. Therefore in traditional communication system, the
received symbols at the receiver are corrupted with noise
from the environment, while in the molecular communication
system, the received symbols are corrupted because of the
random propagation of particles.
Clearly, there exists some PMF fY |X(y|x) of the number of

arrived particles given the number of transmitted particles. If
this PMF is known, we can calculate mutual information for
any fX(x). However, in order to calculate the channel capacity
we need to find the PMF fX(x) that maximizes mutual
information. We can use the Blahut-Arimoto algorithm [11],
[12] to find the PMF fX(x) such that, given fY |X(y|x), mutual
information is maximized. Therefore, if PMF fY |X(y|x) is
known, we can calculate the channel capacity of the molecular
communication system in a straight forward manner.
Finding the PMF fY |X(y|x) is non-trivial because of the

random motion of particles, as well as the shape and the
geometry of the confined molecular communication channel.
This PMF can be estimated using Monte Carlo simulations
as proposed in [8], [9]. However, these simulations can be
time-consuming since for each value of X ∈ X and value of
T , a set of Monte Carlo simulations is necessary to estimate
PMF fY |X(y|x). In the next section we present a mathematical
model that could be used to estimate PMF fY |X(y|x) using a
simpler set of simulations based on different values of T .

C. Mathematical Modelling
Assume that our grid loading zone contains n squares (i.e.

the maximum number of particles that can be anchored to the
loading zone is n). As explained before, Let X ≤ n be the
number of particles at the transmission zone in the beginning,
and let Y ≤ X be the number of particles delivered to the
receiver zone after time duration T . Let Xi be a Bernoulli
random variable representing the event where a particle is
placed in the ith square for i = 1, 2, · · · , n. Therefore, if we
assume that Xi are independent of each other, the probability
that an information particle is placed in the ith square is given
by

p(Xi = 1) =
X

N
, (3)

where particles are distributed uniformly among squares. Note
that the independence assumption here is an approximation
because it does not satisfy the constraint

X =
n
∑

i=1

Xi, (4)

Let Vi be a Bernoulli random variable representing the event
that the ith square is visited by the microtubule in a single trip



PDF visited squares 
for one trip

Molecular communication 
channel with strip loading 
zone (non-optimal)

Optimal loading area
(white squares)

Fig. 4. (Top): Probability distribution of p(Vi = 1) for squares of size 1µm
to the left side of the loading area. (Middle): Strip loading area (yellow and
cyan squares) for n = 100 squares. (Bottom): Projection of the probability
distribution p(Vi = 1) on top. The top 100 values of p(Vi = 1) are shown
in as white squares and they represent the optimal loading area.

from the receiver zone, to the transmission zone, and back.
Therefore, p(Vi = 1) represents the probability that the ith
square is visited and p(Vi = 0) the probability that it is not
visited. This probability distribution can quickly be calculated
using simple simulations for any molecular communication
channel. For example, the top part of the Figure 4 shows this
probability distribution for squares of size 1µm covering the
left side of the microchannel. From the probability distribution,
it can be seen that the squares close to the walls are visited the
most, which is a property of the motion of the microtubules.
Let K be another random variable representing the number

of microtubule trips between the transmission and the receiver
zone in time duration T . The probability distribution for K is
given in [8], and can be quickly calculated for any molecular
communication channel using simple simulations. Let V (k)

i

be a Bernoulli random variable representing the event that the
ith square is visited at least once by the microtubule during k
trips. Therefore,

p(V (k)
i = 1) = 1− (1− p(Vi = 1))k, (5)

represents the corresponding probability distribution.
Let Dk

i be a Bernoulli random variable representing the
event that a particle from the ith square is delivered to the
destination after k trips. Then, the probability distribution of
Dk

i is given by

p(D(k)
i = 1) = p(V (k)

i = 1)p(Xi = 1), (6)

assuming p(V (k)
i = 1) and p(Xi = 1) are independent. This

independence assumption is not accurate since p(Xi = 1)
changes depending on the number of particles already deliv-
ered in previous trips. In general this assumption becomes less
accurate as the number of trips k increases or in other words
the channel time duration T increases. Let Y (k) be the total

number of particles delivered to the unloading zone during k
tips. Then, Y (k) is given by

Y (k) = min(
n
∑

i=1

Dk
i , X), (7)

for any given X . Since
∑n

i=1 D
k
i represents a Poisson-

Binomial distribution, its corresponding probability distribu-
tion can be calculated using [13]. Finally, we can calculate
PMF fY |X(Y |X) as

fY |X(Y |X) =
∑

k∈K

p(Y (k) | X)p(k), (8)

where p(Y (k) | X) is the probability mass function of Y (k)

given in Equation (7), and p(k) is the probability mass function
of K , the number of trips between the transmitter and receiver
during the time duration T .
The benefits of this model is twofold. First, it can be

employed to quickly estimate the information rate of any
molecular communication system, and although it relies on
simulations for calculating the probability distributions of Vi

andK , these simulations are very simple and can be performed
on an average computer quickly. Second, because of the
model’s simplicity, various design problems can be solved, for
example, in the next section we use this model to generate an
optimal transmission zone. The only drawback of this model
is that the resulting PMF, fY |X(Y |X), is not as accurate as
the one derived using Monte Carlo simulation scheme used in
[6], [9].

D. Improving Information rate
We can improve channel capacity if we transfer information

particles from the transmitter to the receiver quicker on aver-
age. We use our mathematical model presented in previous
section, and the fact that the microtubules mostly move
along the walls of the molecular communication channel,
to optimize the loading area. Recall from top part of the
Figure 4 that microtubules mostly move along the walls, and
therefore p(Vi = 1) (probability that a square is visited in one
microtubule trip) is higher for squares close to the walls of the
molecular communication channel. An information particle is
picked up from the transmission zone, and delivered to the
receiver zone, if the corresponding square is visited. Therefore,
we want to find squares with maximum p(Vi = 1), which
are squares that have the highest probability of being visited
during one trip. In Figure 4, we plot the probability distribution
of all the squares of length 1µm to the left of transmission area
(the bar plot on the top). The middle plot in Figure 4 shows
our original strip loading area with 100 squares presented in
Figure 2. Notice that the squares in the middle of the strip
loading zone have low probability of being visited in a single
microtubule trip. The bottom plot shows the projection of the
probability distribution function of p(Vi = 1). The first 100
squares with highest probabilities are shown as white squares,
and the rest of the squares are shown in black. Note that in this
projection, the minimum distance between the transmission
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Fig. 5. Mutual information (i.e. information rate) plot. Strip loading zone
plots are presented as circles and optimal loading zone plots are presented
as squares. The solid markers indicate simulated information rate and the
empty markers present the information rate calculated using our model. The
blue plots present the communication time duration of 1000s and the magenta
plots represent a time duration of 7000s. Note the very high accuracy of the
model at 1000s

area and the receiver area is still 40µm and we have not
moved the transmission and receiver physically closer. Finally,
according to our mathematical model, this white area is the
optimal loading zone that will give us the highest information
rate because probability of visiting and picking up particles is
highest.

III. RESULTS
In this section, we compare the information rates obtained

through simulation to the information rates obtained using
our mathematical model. In order to make this comparison,
we consider a rectangular propagation environment, with
the dimensions 20µm by 60µm presented in Figure 2. The
transmission area is the strip on the left while the receiver
area is on the strip right and the separation between the
transmission zone and the receiver zone is 40µm. We assume
the diameter of the information particles is 1µm and there
are 100 squares in the grid loading area (i.e. there could be
as much as 100 squares in the loading strip). We also use
our mathematical model to generate an optimal loading area
that would maximize the information rate as explained in the
previous section. This optimal loading area is represented by
the white squares in the bottom of the Figure 4.
For Monte Carlo simulation of the motion of the micro-

tubules, we use the same technique proposed in [9] with the
following parameters: simulation time steps of ∆T = 0.1
seconds, microtubule diffusion coefficient D = 2.0 · 10−3

µm2/s, average speed of the microtubule vavg = 0.5 µm/s,
and persistence length of the microtubules trajectory Lp = 111
µm. We also assume the size of the information particles is
1µm, the average length of the microtubules is 10µm, and
each microtubule can load up to 5 information particles in
one trip from the transmission zone to the receiver zone. These
parameters are all selected based on experimental observations
of ssDNA covered microtubules moving over a kinesin covered
substrate.
In our simulations we assume the set of possible transmis-

sion symbols are X = {0, 1, 2, · · · , xmax}, for some value of
xmax, where a transmission symbol X ∈ X is represented
by release of X information particles into the medium. In
the case of active transport, all the released particles will
be randomly distributed and stationary at the transmission
zone until they are picked up for delivery by a microtubule.
By simulating the motion of the microtubules many times,
we derive the PMF fY |X(y|x) for both passive and active
transport. We then use Blahut-Arimoto algorithm [11], [12]
to find the PMF fX(x), that would maximize the mutual
information, and hence calculate the channel capacity for each
propagation scheme. We repeat the same process using our
mathematical model to estimate PMF fY |X(y|x) and then
compare the results.
Figure 5 shows the mutual information (i.e. maximum

achievable information rate) of two different loading zones:
strip loading zone, shown using circles, and the optimal
loading zone, shown using squares. The mutual information
is plotted against the xmax which represents the maximum
number of possible transmission symbols. The mutual infor-
mation is calculated by using both simulation (solid markers)
and the mathematical model (empty markers). As we can see
for small time durations, the mathematical model estimates
the simulated mutual information closely. However, as time
duration increases, the difference between the mutual infor-
mation obtained through simulations and the mathematical
model increases. This error is a by product of the independence
assumptions made during the derivation of our mathematical
model. Finally, we can see that the optimal loading zone
achieves a much higher information rate compared to the strip
loading zone as proposed by our analysis of our mathematical
model.

TABLE I
NUMBER OF SIMULATIONS REQUIRED TO ESTIMATE fY |X(y|x)

Method of PMF Estimation Number of Computer Simulations
Monte Carlo Simulation 2× 2× 40 = 160
Mathematical Model 3

Finally, we compare the number of computer simulations
required to estimate PMF fY |X(y|x), for the plots in Figure
5, using both Monte Carlo simulations and the proposed
mathematical model. The results are summarized in Table I.
Since there are 40 values of xmax and two time durations of
1000s and 7000s, when Monte Carlo simulation is used to
estimate the PMF fY |X(y|x), there are 80 sets of simulations



required to generate the plot for the strip loading area and
another 80 sets of simulations to generate the results for
optimal loading area. However, using our mathematical model,
two sets of simulation are necessary to calculate the PMF for
K , the number of microtubule trips from the loading zone to
the unloading zone in times 1000s and 7000s, and one set of
simulations to calculate the PMF for Vi, the probability that
the ith grid square is visited in one trip. These simulations
can be used for both strip and optimal loading area and as the
result no extra simulations are necessary.
Furthermore, when Monte Carlo simulation is employed, as

the number of information particles released by the transmitter
increases, the actual simulation times increases. For example,
simulating one particle at the source take much less time than
simulating 40 particles at the source. In this case, when one
particle is assumed to be released, the simulation runs until
time duration T is simulated or until the single particle is
delivered, while it must run until time duration T is simulated
or 40 particle are delivered when 40 particles are assumed to
be released. However, using the proposed mathematical model,
the simulation times are constant regardless of the number
of particles released by the transmitter. Therefore, using the
proposed mathematical model the channel capacity can be
calculated much quicker than the Monte Carlo simulations
proposed in [6], [9]. For example, using simulations written
in Matlab [14], and average desktop computers equipped
with Intel Core Due processors with different speeds ranging
from 2.5GHz to 3.0GHz, we used 40 different CPU cores to
generate the Monte Carlo simulation results shown in Figure
5, for both the strip and optimal loading area, in about two
weeks (almost one week for each loading zone). However, the
plots based on the mathematical model were generated using
three CPU cores in about a day for both the strip and the
optimal loading area.

IV. CONCLUSION
In this work we considered a molecular communication

system, in a rectangular confined space, employing active
transport as proposed in [2]. In order to estimate the channel
capacity of such a communication systems, previous works
[6], [9], had relied on Monte Carlo simulations of the motion
of microtubule filaments. These simulations can be time con-
suming since for each set of possible transmission symbols as
well as channel time durations, a different set of simulation
is necessary. We proposed a mathematical model that could
be used to estimate the channel capacity of these systems.
The benefits of the proposed model are three folds. First,
using the mathematical model a fewer number of simulations
is required to estimate the channel capacity. Second, using
the insights provided by the model an optimal loading area is
derived that increases the channel capacity of the molecular
communication channel. The channel capacity estimation ob-
tained using the proposed mathematical model is very close
to the Monte Carlo simulation estimated channel capacity
for small channel time durations. However, as channel time
duration increases the error in the proposed mathematical

model increases. Finally, the proposed mathematical model
could be expanded to any other molecular communication
channel quickly and could possibly be used to optimize the
shape of the microchannel itself.
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